
Optimization of Constraint Engine
Siva Kumar Kotamraju

CSE Department,

Vignans Nirula Institute of Technology & Science for Women

Pedapalakaluru, Guntur

Andhra Pradesh, India-522005

Abstract— The Performance Analysis of Constraint Engine is
the work done to discover new Optimization methods for
Optimizing Perl modules

Keywords— Optimization, Constraint Engine

I. INTRODUCTION

In order to determine if tests can be merged together into
a single job it is necessary to know the requirements of the
template to run correctly, and resolve the competing
requirements of templates for shared resources such as
memory locations, template build options, API options and
DUT configuration settings. The constraint engine provides
the functionality of taking in all the requirements for tests
and finding a solution that meets the user’s requests both in
terms of absolute requirements and also in terms of
probabilistic goals set by the users. Constraint Engine is
part of Migi Tool

II. GOALS

1. Track usage of shared resources to avoid building
tests that cannot run together successfully

This is the minimum functionality – without this we
can’t do test merging without the majority of merged tests
failing due to conflicts over shared resources such as
memory, shared control registers and APIs that might affect
or check more than one thread.

2. Provide globally optimal allocation of shared
resources where possible

We want to make globally-aware decisions about the
shared resources (and decisions that affect a test’s use of
those shared resources) so that a random choice doesn’t
unnecessarily restrict our ability to run tests. Historical
experience from MTMerge and previous MP test generation
tools strongly indicate that non-global allocation in this
space is undesirable.

3. Provide tests dynamically
Determining the runtime of a test is impossible without

running the test on the MUT (it’s the halting problem.) We
also believe that it is extremely likely that we will often
have threads on the MUT that will be idle for nontrivial
periods of time. We wish to reuse that simulation time to do
useful testing, so the constraint engine must be capable of
allocating resources to a new test after other tests have been
deployed on the system.

4. Provide statistically significant solutions
Users will be specifying parameters that can take on one

of many values, and in many cases the distribution of those
values over many runs of tests is significant to the user.

While in some cases it is impossible to provide the
distribution to multiple values, there needs to be a ‘best
case’ effort by the tool to provide the distribution requested.

5. Provide an interface for selecting random values
with constraints in a test

The constraint engine also will provide a mechanism for
tests to select random values for build parameters and
specify constraints on those parameters within a single test.
This is a useful mechanism for test authors to more easily
add randomness to their tests while putting limits on the
randomness.

III. GROUNDWORK AND DEFINITIONS

Parameters and Options
A parameter is a variable that is assigned a value by the

CE. An option is a possible value that the parameter may
take. Parameters may have multiple options, and the
options can have weights which affect the probability of
which option is chosen.

An option can depend on the value of other parameters.
All options will be evaluated by the Perl interpreter and
therefore may contain arbitrary Perl code that references the
values of other parameters.

Constraints
A constraint is a restriction that is imposed on the space

of parameter values. Constraints are in the form of arbitrary
Perl code that will be evaluated. If the code evaluates to
true (non-zero), the constraint is said to be satisfied.

Streams
A stream is a series of software instructions that executes

on a single LP (logical processor). It will contain
parameters, and constraints that pick combinations of
parameter values the stream needs to run.

Tests
A test is a container for one or more streams. Tests can

also contain parameters and constraints that pick
combinations of parameter values the test needs to start
building.

Tests waiting to run are kept in a priority queue. This
means that in general, higher priority tests will run before
lower priority tests as long as constraints are not blocking
the higher priority tests.

Test blocks
A test block is a container for one or more tests. Test

blocks can be layered, meaning containing other test blocks.
Constraints can also be specified for test blocks, with the
intention that those constraints will be copied into every
stream inside, and evaluated inside the stream.

Siva Kumar Kotamraju et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (6) , 2016,2469-2471

www.ijcsit.com 2469

Merge blocks
A merge block is a container for one or more tests.

There are two types:

Parallel merge blocks contain tests that should run

concurrently. For any test in the merge block to build and
run, all tests in the merge block must also build and run.

Serial merge blocks contain tests that should run in series,

one after another, in the order specified.

Merge blocks can also contain other merge blocks,

meaning merge blocks can be layered.

Implementing serial merge blocks is difficult, and may

not be done unless there is demand for the feature.
Furthermore, from here, if the term merge block is used
without specifying the type, it is referring to parallel merge
blocks

Test Queues
Every test has a status, which can be one of the following:

RUNNING The test has been reported as running by

the Migi Control. For a test to reach this state, it must have
built correctly, meaning all of its constraints are satisfied
and all of its parameters are "locked" (they can no longer
change their value.)

BUILDING The test is either ready to build or
currently building. For a test to stay in this queue, all of its
constraints must be satisfied. Updates to parameters
throughout the build process may cause constraints to fail,
which would cause removal of the test from the
BUILDING queue.
WAITING The test is currently failing some of its
constraints and cannot be built right now. The failing
constraints could be system-imposed (no logical processors
are available for the test), or user-imposed (the user may
have requested the test run alone on a core.)

WAITING -> BUILDING (promotion)
 When logical processors in the system are available,

some WAITING tests will be promoted to BUILDING.
The CE will then attempt to solve the constraint system. If

successful, the tests added to the BUILDING queue will
remain, indicating they are ready to build. If adding the
new tests causes the constraint system to fail, tests will be
removed (and put back in the WAITING queue) until the
constraint system can be solved.

BUILDING -> RUNNING (promotion)
When the Migi Control indicates a test will run, it is

promoted to RUNNING. Once a test is in the RUNNING
queue, it will remain there until the Migi Control tells the
CE to release the test (probably because the test finished
running.)

BUILDING -> WAITING
This transition can happen in two cases

1) If the Migi Builder updates a test’s parameters, this
may cause the constraint system to fail. In this case, the test
goes back to WAITING.

2) As logical processors become available, some

WAITING tests will be promoted to BUILDING. If the CE
cannot solve the constraint system with these new tests, the
tests will return to WAITING. Tests are returned to the
WAITING queue lowest priority first, until the constraint
system can be solved.

Parameter / Constraint Interdependencies
Parameters and constraints are concepts with many

interdependencies. The following relationships exist:

1) Constraints are arbitrary sections of Perl code that

check whether parameters satisfy certain properties. As
such, they are dependent on the parameters they reference.

The CE must be aware of the parameters a constraint is

dependent on so that if a constraint evaluates to false
(indicating that it is unhappy with one or more of the
parameters), the CE can then pick different options for
some of the dependent parameters in an effort to satisfy the
constraint.

 2) Parameters are related to constraints. If a

parameter changes, the CE must know all of the constraints
that referenced that parameter so that those constraints can
be re-evaluated.

 3) A parameter can be dependent on other

parameters. Because an option for a parameter may depend
on the values of other parameters, changing one parameter
can affect the values of several other parameters. Every
time the CE changes the value of a parameter, it needs to
check which other parameters depend on it, so those
parameters can be re-evaluated.

IV. OPTIMIZATION TECHNIQUES:

1) String Comparison:
The code inside the subroutine does arithmetic and a

numeric comparison of two strings. It assigns one string to
another if the condition tests true but the condition always
tests false.

 sub test_code{
 my ($a,$b) = qw(foo bar);
 my $c;
 if ($a == $b) {
 $c = $a;
 }
 }

Now let's fix the comparison the way it should be, by

replacing == with eq, so we get:

my ($a,$b) = qw(foo bar);
 my $c;
 if ($a eq $b) {
 $c = $a;

Siva Kumar Kotamraju et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (6) , 2016,2469-2471

www.ijcsit.com 2470

2) Concatenation:
$title = 'My Web Page';

 print '<h1>' . $title . '</h1>'; # Concatenation
(slow) .

 print '<h1>', $title, '</h1>'; # List (fast for long
strings)

3) Way of Calling Subroutines:
• Light Subroutines: function form (like

Foo::bar('Foo'))
• Heavy Subroutines: method form (like Foo->bar())

 It will make code easier to develop, maintain and
debug, saving programmer time which, over the life of a
project may turn out to be the most significant cost factor

4) Needless importing :
use POSIX; # Exports all the defaults -0.516us
use POSIX (); # Exports nothing -0.315us.

5) Avoid $&:
$text =~ /.* rules/; $line = $&; # Now every match will

copy $& slow
$text =~ /(.* rules)/; $line = $1; # Didn't mention $& fast

6) Pull things out of loops:
 Perl's hash lookups are fast. But they aren't as fast as a

lexical variable. The value of $type didn't change, so I
pulled the lookup out above the loop into a lexical variable.

my $type_func = $encode_types{$type};

7) Transliteration operator:
• tr/!// # fastest way to count chars: In scalar context

it returns the number of characters that matched. It's the
fastest way to count the number of occurrences of single
characters and character ranges

• tr/q/Q/ faster than s/q/Q/g: tr is also faster than the
regexp engine for doing character-for-character
substitutions.

• tr/a-z//d faster than s/[a-z]//g: tr is faster than the
regexp engines for doing character range deletions

8) String Concatenation:
• Ordinary Concatenation: less time
• Generating an Array and concatenating with join:

More time
9) Use references : While working with large

arrays or hashes and use them as arguments to
functions. Saves memory

10) String handling: In a Web application, use
single quotes rather than doubles.

11) Loops: Excessive function calls in a loop are
generally a bad idea. Loop in a Function is a
good Procedure. Use map instead of for-each
for each Pass.

12) Using short circuit logic:
use the logical || operator, Perl will use the first

true value it comes across, in order, from left to right. The
moment it finds a valid value, it doesn't bother processing
any of the other values.

13) cache the array list, and then return the cached
copy instead of re-creating the array all the
time.

V. EXPERIMENTAL RESULTS

Performance Analysis is to identify the Non-optimized
Perl subroutines in the Constraint Engine Part. By Running
the Command Lines for different tests and analyzing the
Profile data, the following is the Result

30_parallel_merge_advanced.test

0

20

40

60

80

100

120

M
igi

::C
E::p

ro
ce

ss
_r

eq
ue

st

M
igi

::C
E::_

pr
oc

es
s_

ad
d_

te
st

M
igi

::C
E::_

so
lve

M
igi

::C
E::T

es
tb

loc
k::

re
pic

k

 M
igi

::C
E::T

es
t::

re
pic

k

M
igi

::C
E::S

tre
am

::r
ep

ick

 M
igi

::C
E::C

on
str

ain
t::

sa
tis

fie
d

 M
igi

::C
E::C

on
str

ain
t::

ev
al_

co
ns

tra
int

M
igi

::C
E::C

on
str

ain
t::

re
pic

k

M
igi

::C
E::E

va
l::e

va
lua

te

M
igi

::C
E::P

ar
am

et
er

::p
ick

_n
ew

_o
pt

ion

 M
igi

::C
E::C

om
m

on
::A

UTO
LO

AD

 M
igi

::C
E::P

ar
am

et
er

::g
en

er
at

e_
ev

al_
op

tio
n

M
igi

::C
E::T

es
tb

loc
k::

te
sts

M
igi

::C
E::P

ar
am

et
er

::e
xtr

ac
t_

de
pe

nd
en

cie
s

Subroutine

P
e

rc
en

ta
g

e
 o

f
to

ta
l t

im
e

Series1

Series2

Series3

Series4

Optimized Constraint.pm in CE

30_Parallel_merge_advanced.test

0

20

40

60

80

100

120

M
igi

::C
E::p

ro
ce

ss
_r

eq
ue

st

M
igi

::C
E::_

pr
oc

es
s_

ad
d_

te
st

M
igi

::C
E::_

so
lve

M
igi

::C
E::T

es
tb

loc
k::

re
pi

ck

M
igi

::C
E::T

es
t::

re
pic

k

M
ig

i::C
E::S

tre
am

::r
ep

ick

M
igi

::C
E::C

on
str

ai
nt

::s
at

isf
ied

M
ig

i::C
E::C

on
st

ra
int

::e
va

l_c
on

str
ain

t

M
igi

::C
E::C

on
str

ain
t::

re
pic

k

M
igi

::C
E::E

va
l::e

va
lu

at
e

M
igi

::C
E::P

ar
am

et
er

::p
ick

_n
ew

_o
pt

ion

M
igi

::C
E::C

om
m

on
::A

UTO
LO

AD

M
igi

::C
E::P

ar
am

et
er

::g
en

er
at

e_
ev

al_
op

tio
n

M
ig

i::C
E::T

es
tb

lo
ck

::t
es

ts

M
igi

::C
E::P

ar
am

et
er

::e
xtr

ac
t_

de
pe

nd
en

cie
s

Subroutine

P
er

ce
n

ta
g

e
o

f
ti

m
e

Series1

Series2

Series3

Series4

REFERENCES
[1] When Perl is not quite Fast enough” by Nicholas Clark

Link: http://www.ccl4.org/~nick/P/Fast_Enough/
[2] Data Structures and Algorithms with examples in Perl by Jon

Jacky.
Link: http://staff.washington.edu/jon/dsa-perl/dsa-perl.html

Siva Kumar Kotamraju et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (6) , 2016,2469-2471

www.ijcsit.com 2471

